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Overview

GBFP Angular Scattering Approximations
– Discrete
– Hybrid-Discrete
– Hybrid-Exponential

Condensed History (CH) Algorithms

3-Dimensional Simulation (2-Dimensional
Results) with a Material Interface
– High-energy electrons in low-Z materials
» highly anisotropic scattering

– Low-energy electrons in high-Z materials
» weakly anistropic scattering
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Motivation

• Current electron transport Monte Carlo
algorithms are condensed history
– This is the scheme implemented in Sandia’s electron-

photon Monte Carlo code, ITS or the Integrated-TIGER-
Series

– Aggregation of many scattering interactions into an un-
transport-like step or linear displacement

– Known deficiencies, especially at boundary crossings

•  Provide an alternative to condensed-history
in our production code, ITS
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Condensed History and Transport
Monte Carlo Algorithms

Transport Algorithms
Solve Boltzmann transport equation
with approximate cross sections.

•  Random distance-to-collision is
sampled from an exponential distribution

•  Angular sampling from analytical,
multiple-scattering, discrete, or other
distribution

Condensed History Algorithms
Apply an infinite medium angular
solution and algorithmically
approximate the spatial displacement.
•  ETRAN, ITS, MCNP model: particle
scatters at the end of the step

•  Random Hinge model: particle scatters
at a randomly selected point within the step

•  Angular sampling from a multiple-
scattering distribution
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The discrete scattering kernel is:

αn are amplitudes
ξn are scattering cosines

Requiring that αn and ξn preserve 2N momentum transfer
moments (σn, n=1,…,2N) produces a nonlinear algebraic
system.

Solving by Newton iteration and solving by Sloan’s method yield
identical results.

Discrete-Angle Scattering Model
for Elastic Electron Scattering
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Sloan, D.P., “A New Multigroup Monte Carlo Scattering Algorithm for Neutral and Charged-Particle Boltzmann
and Fokker-Planck Calculations,” Technical Report SAND83–7094, Sandia National Laboratories (1983).
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The hybrid/discrete scattering kernel is:

αn are amplitudes
ξn are scattering cosines
η* is a larger screening parameter than the analog value, η

Requiring that αn and ξn preserve 2N residual momentum transfer
moments (σn, n=1,…,2N) produces a nonlinear algebraic
system.

This is solved using Sloan’s method.

Hybrid/Discrete Angle Scattering
Model for Elastic Electron Scattering

Sloan, D.P., “A New Multigroup Monte Carlo Scattering Algorithm for Neutral and Charged-Particle Boltzmann
and Fokker-Planck Calculations,” Technical Report SAND83–7094, Sandia National Laboratories (1983).
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Hybrid/exponential scattering kernel:

η* is a larger screening parameter than the analog value, η
A and B are calculated to preserve two residual momentum
transfer moments

Hybrid/Exponential Scattering Model
for Elastic Electron Scattering
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Simplifications for all of our calculations:
• Continuous Slowing-Down (CSD) in energy
• Electron-only simulations without secondary

electrons
• Screened Rutherford angular scattering
• These simplifications are not required for the

GBFP approach.  They are being made to isolate
the effects of the approximations.
• We have implemented simple material boundary

crossing algorithms for all methods.
– For GBFP and analog, we preserve distance in mean free

paths between interactions.  This is the proper transport
treatment.

– For CH, we preserve fractional step-sizes between materials.
This is an approximation.

Simplifications for Assessing
These Methods
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Pencil-Beam Incident on a Block,
Gold imbedded in Silicon,

200 keV electrons

The pencil beam is normally incident
at the midpoint of the bottom of the block.
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200 keV Electrons Incident on
Silicon and Gold

Analog Benchmark Dose

Random Hinge ITS-like Algorithm

Relative Difference with Benchmark

(keV/g)

Hybrid-Discrete Hybrid-Exponential

The relative differences in the approximate methods are shown for 4 calculations
requiring approximately the same runtime and using the same number of particles.

Au
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200 keV Electrons Incident on
Silicon and Gold

Relative Error vs. Runtime

A parameter was varied in each of the approximate methods to increase accuracy
and increase runtime (e.g., substep size, discrete angles, smooth mean free path).
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Pencil-Beam Incident on a Block,
Bone Imbedded in Water,

10 MeV electrons

The pencil beam is normally incident
at the midpoint of the bottom of the block.
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10 MeV Electrons Incident on
Water and Bone

Analog Benchmark Dose

Random Hinge ITS-like Algorithm

Relative Difference with Benchmark

(keV/g)

Hybrid-Discrete Hybrid-Exponential

The relative differences in the approximate methods are shown for 4 calculations
requiring approximately the same runtime and using the same number of particles.

Bone
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10 MeV Electrons Incident on
Water and Bone

Relative Error vs. Runtime

A parameter was varied in each of the approximate methods to increase accuracy
and increase runtime (e.g., substep size, discrete angles, smooth mean free path).
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Summary / Future Efforts

• GBFP is a viable alternative to CH
• Implement GBFP in ITS for general use
– Users will have an option of selecting GBFP or CH
– Energy-loss Treatment
» Similar Approaches Can Be Applied
» Lee Harding and Anil Prinja are developing this.

– Implement more realistic physics
» We Are Developing Mott Angular Scattering for Hybrid

Methods
» Secondary particle production issues (e.g. bremsstrahlung)

need to be integrated into GBFP for general purpose.


